Temperature monitoring of the motor winding

Monitoring relays - GAMMA series
Tripping unit for temperature monitoring of the motor winding
with and without short circuit monitoring of the thermistor line (selectable by means of terminals)
Optional evaluation of one thermal contact
Test function with integrated reset key
Zoom voltage 24 to 240 V a.c./d.c.
2 change over contacts
Width 22.5 mm
Industrial design

Technical data

1. Functions

Temperature monitoring of the motor winding (max. 6 PTC) with fault latch for temperature probes in accordance with DIN 44081, short circuit monitoring of the thermistor line (selectable by means of terminals), test function with integrated test/reset key.

2. Time ranges

Adjustment range
Start-up suppression time:
Tripping delay:
3. Indicators

Green LED ON: indication of supply voltage
Yellow LED ON/OFF: indication of relay output
Red LED ON/OFF:
indication of failure

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20. Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without mulitcore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without mulitcore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without mulitcore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without mulitcore cable end
5. Input circuit

Supply voltage: 24 to 240 V a.c./d.c. terminals A1-A2 (galvanically separated)
Tolerance:
24 to 240 V d.c.
24 to 240 V a.c.
Rated frequency 48 to 400 Hz 16 to 48 Hz
Rated consumption:
Duty cycle:
Reset time:
Residual ripple for d.c.:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
6. Output circuit

2 potential free change-over contacts
Rated voltage: $\quad 250 \mathrm{~V}$ a.c.
Switching capacity: $\quad 750 \mathrm{VA}$ (3A / 250 V a.c.)
If the distance between the devices is less than 5 mm .
Switching capacity: $\quad 1250 \mathrm{VA}$ (5A / 250 V a.c.)
If the distance between the devices is greater than 5 mm .
Fusing:
5A fast acting
Mechanical life: 20×10^{6} operations
Electrical life:

Switching frequency:

Overvoltage category:
Rated surge voltage:
7. Measuring circuit

Input:
Initial resistance:
Response value
(relay in off-position):
Release value
(relay in on-position):
Disconnection
(short circuit thermistor):
Measuring voltage T1-T2, T1-T3:
Measuring voltage T1-T2:
Overvoltage category:
Rated surge voltage:
8. Control contact R

Function:
Loadable:
Line length R-T2:
Control pulse length:
Reset:
9. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
10. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:

Pollution degree:
Vibration resistance:
Shock resistance:
max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1) III (in accordance with IEC 60664-1) 4 kV
terminals T1-T2 or T1-T3
$<1.5 \mathrm{k} \Omega$
$\geq 3.6 \mathrm{k} \Omega$
$\leq 1.8 \mathrm{k} \Omega$
$<20 \Omega$
$\leq 2.5 \mathrm{~V}$ d.c. at $\mathrm{R} \leq 4.0 \mathrm{k} \Omega$
(according to DINVDE 0660 part 302)
max. $7,5 \mathrm{~V}$ at open circuit T1-T3
III (in accordance with IEC 60664-1)
4 kV
external reset key
no
max. 10m (twisted pair)
potential free normally open contact, terminals R-T2
$\pm 10 \%$ (of maximum scale value)
-
$\leq 1 \%$
$\leq 0.1 \% /{ }^{\circ} \mathrm{C}$
-25 to $+55^{\circ} \mathrm{C}$
(in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$
(in accordance with UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(in accordance with IEC 60721-3-3
class 3K3)
3 (in accordance with IEC 60664-1)
10 to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

Temperature monitoring of the motor winding with fault latch If the supply voltage U is applied (green LED illuminated) and the cumulative resistance of the PTC-circuit is less than $3.6 \mathrm{k} \Omega$ (standard temperature of the motor), the output relays switch into on-position. Pressing the test/reset key under this conditions forces the output relays to switch into off-position. The output relays remain in this state as long as the test/reset key is pressed and thus the switching function can be checked in case of fault. The test function is not effective using an external reset key. When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$ (at least one of the PTCs has reached the cut-off temperature), the output relays switch into off-position (red LED illuminated). The output relays switch into on-position again (red LED not illuminated), if the cumulative resistance drops below $1.8 \mathrm{k} \Omega$ by cooling down of the PTC and either a reset key (internal or external) was pressed or the supply voltage was disconnected and re-applied.

Short circuit monitoring of the thermistor line (T1-T2) In case of a short circuit of the probe line (cumulative resistance less than 201) the output relays switch into off-position (red LED illuminated) if the additional function "Short circuit monitoring" (connection of the probe to the terminals T1-T2) is activated.
In that case the output relays do not change their state, neither by pressing a reset key nor by disconnecting and re-applying the supply voltage.

Connections

Monitoring of the thermistor with short circuit detection

Connections

Monitoring of the thermistor without short circuit detection

Monitoring of the thermo switch

Dimensions

